Two identical plates $ P $ and $ Q $, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures $ T_P $ and $ T_Q $, respectively, with $ T_Q<T_P $, as shown in Fig. 1. The radiated power transferred per unit area from $ P $ to $ Q $ is $ W_0 $. Subsequently, two more plates, identical to $ P $ and $ Q $, are introduced between $ P $ and $ Q $, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from $ P $ to $ Q $ (Fig. 2) in the steady state is $ W_S $, then the ratio $ \dfrac{W_0}{W_S} $ is ____. 
Step 1: Power radiated between two black bodies
For two black bodies at temperatures \( T_P \) and \( T_Q \), the net power radiated per unit area is given by the Stefan-Boltzmann law:
\[ W = \sigma \left( T_P^4 - T_Q^4 \right) \]
So initially (Fig. 1), the power is:
\[ W_0 = \sigma \left( T_P^4 - T_Q^4 \right) \]
Step 2: Insert two intermediate black plates
In Fig. 2, two additional identical black plates are placed between \( P \) and \( Q \). Let the four plates be \( P, A, B, Q \) from left to right.
Assume steady state and let the temperatures of the intermediate plates be \( T_1 \) and \( T_2 \), such that:
\[ T_P>T_1>T_2>T_Q \]
Now, energy is transferred between adjacent pairs only:
At steady state, the energy flow rate must be the same through all three segments:
\[ \sigma (T_P^4 - T_1^4) = \sigma (T_1^4 - T_2^4) = \sigma (T_2^4 - T_Q^4) \]
Let this common value be \( W_S \), then:
\[ T_P^4 - T_1^4 = T_1^4 - T_2^4 = T_2^4 - T_Q^4 = \Delta \]
Therefore:
\[ \begin{align} T_P^4 - T_Q^4 &= (T_P^4 - T_1^4) + (T_1^4 - T_2^4) + (T_2^4 - T_Q^4) \\ &= 3\Delta = \frac{3W_S}{\sigma} \Rightarrow W_S = \dfrac{1}{3} \sigma (T_P^4 - T_Q^4) \end{align} \]
Step 3: Compute the ratio
\[ \frac{W_0}{W_S} = \frac{\sigma (T_P^4 - T_Q^4)}{(1/3) \sigma (T_P^4 - T_Q^4)} = \boxed{3} \]
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is