In order to determine which of the given chemical species has the strongest oxidizing capacity, we need to examine their standard reduction potential values. The species with the highest standard reduction potential will have the strongest oxidizing capacity, as a higher reduction potential indicates a greater tendency to gain electrons and thereby oxidize other substances.
Here are the given standard reduction potentials:
Comparing these values, \(E^\circ_{\text{Pb}^{4+} / \text{Pb}^{2+}} = +1.67 \, \text{V}\) is the highest. Therefore, the ion \( \text{Pb}^{4+} \) has the strongest oxidizing capacity because it more readily accepts electrons to be reduced.
200 cc of $x \times 10^{-3}$ M potassium dichromate is required to oxidise 750 cc of 0.6 M Mohr's salt solution in acidic medium. Here x = ______ .

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 