In order to determine which of the given chemical species has the strongest oxidizing capacity, we need to examine their standard reduction potential values. The species with the highest standard reduction potential will have the strongest oxidizing capacity, as a higher reduction potential indicates a greater tendency to gain electrons and thereby oxidize other substances.
Here are the given standard reduction potentials:
Comparing these values, \(E^\circ_{\text{Pb}^{4+} / \text{Pb}^{2+}} = +1.67 \, \text{V}\) is the highest. Therefore, the ion \( \text{Pb}^{4+} \) has the strongest oxidizing capacity because it more readily accepts electrons to be reduced.
$\mathrm{KMnO}_{4}$ acts as an oxidising agent in acidic medium. ' X ' is the difference between the oxidation states of Mn in reactant and product. ' Y ' is the number of ' d ' electrons present in the brown red precipitate formed at the end of the acetate ion test with neutral ferric chloride. The value of $\mathrm{X}+\mathrm{Y}$ is _______ .
Given below are two statements:
Statement (I): The first ionization energy of Pb is greater than that of Sn.
Statement (II): The first ionization energy of Ge is greater than that of Si.
In light of the above statements, choose the correct answer from the options given below:

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :