We are given the following values:
- \( q_1 = 6.67 \times 10^{-19} \, \text{C} \) (charge of ion A)
- \( q_2 = 9.6 \times 10^{-10} \, \text{C} \) (charge of ion B)
- \( m_1 = 19.2 \times 10^{-27} \, \text{kg} \) (mass of ion A)
- \( m_2 = 9 \times 10^{-27} \, \text{kg} \) (mass of ion B)
The electrostatic force \( F_{\text{ele}} \) between the two ions is given by Coulomb's law:
\[
F_{\text{ele}} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}
\]
where \( \epsilon_0 = 9 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \).
The gravitational force \( F_{\text{grav}} \) between the two ions is given by Newton's law of gravitation:
\[
F_{\text{grav}} = \frac{G m_1 m_2}{r^2}
\]
where \( G = 6.67 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \).
The ratio of the electrostatic force to the gravitational force is:
\[
\frac{F_{\text{ele}}}{F_{\text{grav}}} = \frac{\frac{1}{4\pi \epsilon_0} \frac{q_1 q_2}{r^2}}{\frac{G m_1 m_2}{r^2}} = \frac{1}{4\pi \epsilon_0} \times \frac{q_1 q_2}{G m_1 m_2}
\]
Substituting the known values:
\[
\frac{F_{\text{ele}}}{F_{\text{grav}}} = \frac{9 \times 10^9 \times (6.67 \times 10^{-19} \times 9.6 \times 10^{-10})}{6.67 \times 10^{-11} \times (19.2 \times 10^{-27} \times 9 \times 10^{-27})}
\]
Simplifying:
\[
\frac{F_{\text{ele}}}{F_{\text{grav}}} = \frac{9 \times 10^9 \times 6.39 \times 10^{-28}}{6.67 \times 10^{-11} \times 1.728 \times 10^{-53}}
\]
\[
= \frac{5.751 \times 10^{-18}}{1.15 \times 10^{-64}} = 10^{45}
\]
Thus, \( P = 10 \).
Thus, the value of \( P \) is \( \boxed{10} \).