To determine the value of \( P \) in the given question, we need to compare the electrostatic force to the gravitational force between the ions. The formula for each of these forces is as follows:
The ratio of the magnitudes of the electrostatic force to the gravitational force is given by:
\(\text{Ratio} = \frac{F_e}{F_g} = \frac{k \cdot |q_1 \cdot q_2|}{G \cdot m_1 \cdot m_2}\)
Substituting the given values:
\(\frac{F_e}{F_g} = \frac{(8.9875 \times 10^9) \cdot (6.67 \times 10^{-19}) \cdot (9.6 \times 10^{-10})}{(6.674 \times 10^{-11}) \cdot (19.2 \times 10^{-27}) \cdot (9 \times 10^{-27})}\)
Calculating the above expression:
\(\frac{F_e}{F_g} = \frac{(8.9875 \cdot 6.67 \cdot 9.6) \times 10^{9 - 19 - 10}}{6.674 \cdot 19.2 \cdot 9 \times 10^{-11 - 27 - 27}}\)\(= \frac{572.19144 \times 10^{-20}}{1155.4368 \times 10^{-65}}\)\(= 49516.8899 \times 10^{45}\)\(= 4.95168899 \times 10^{49}\)
Given \( P \times 10^{-13} = 4.95168899 \times 10^{49} \), solving for \( P \):
\(P = \frac{4.95168899 \times 10^{49}}{10^{-13}} = 4.95168899 \times 10^{62} = 10 \times 10^{1} = 10\)
Thus, the value of \( P \) is 10, making the correct answer 10.
Correct answer is BONUS
To find the ratio between the magnitudes of the electrostatic force (\( F_e \)) and the gravitational force (\( F_g \)) between two ions \( A \) and \( B \), we use the respective formulas:
\( F_e = \frac{k \cdot q_1 \cdot q_2}{r^2} \quad \text{and} \quad F_g = \frac{G \cdot m_1 \cdot m_2}{r^2} \)
Since the separation distance \( r \) is common in both, it cancels out when taking the ratio:
\( \frac{F_e}{F_g} = \frac{k \cdot q_1 \cdot q_2}{G \cdot m_1 \cdot m_2} \)
Given values:
Substitute into the formula:
\( \frac{F_e}{F_g} = \frac{9 \times 10^9 \cdot 6.67 \times 10^{-19} \cdot 9.6 \times 10^{-10}}{6.67 \times 10^{-11} \cdot 19.2 \times 10^{-27} \cdot 9 \times 10^{-27}} \)
After simplification:
\( \frac{F_e}{F_g} = \frac{10^{-20}}{2 \times 10^{-64}} \)

What is the first law of Kirchhoff of the electrical circuit? Find out the potential difference between the ends of 2 \(\Omega\) resistor with the help of Kirchhoff's law. See the figure:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: