Two vessels A and B are of the same size and are at the same temperature. A contains 1 g of hydrogen and B contains 1 g of oxygen. \(P_A\) and \(P_B\) are the pressures of the gases in A and B respectively, then \(\frac{P_A}{P_B}\) is:
16
8
4
32
Step 1: Use the Ideal Gas Equation:
\[ \frac{P_A V_A}{P_B V_B} = \frac{n_A R T_A}{n_B R T_B} \]
- Given \(V_A = V_B\) and \(T_A = T_B\), the equation simplifies to:
\[ \frac{P_A}{P_B} = \frac{n_A}{n_B} \]
Step 2: Calculate Moles of Each Gas:
- For hydrogen in vessel A:
\[ n_A = \frac{\text{mass of hydrogen}}{\text{molar mass of } H_2} = \frac{1 \text{ g}}{2 \text{ g/mol}} = \frac{1}{2} \text{ mol} \]
- For oxygen in vessel B:
\[ n_B = \frac{\text{mass of oxygen}}{\text{molar mass of } O_2} = \frac{1 \text{ g}}{32 \text{ g/mol}} = \frac{1}{32} \text{ mol} \]
Step 3: Calculate the Ratio of Pressures:
\[ \frac{P_A}{P_B} = \frac{n_A}{n_B} = \frac{\frac{1}{2}}{\frac{1}{32}} = \frac{1}{2} \times 32 = 16 \]
So, the correct answer is: 16
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Pressure is defined as the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
When a force of ‘F’ Newton is applied perpendicularly to a surface area ‘A’, then the pressure exerted on the surface by the force is equal to the ratio of F to A. The formula for pressure (P) is:
P = F / A
The SI unit of pressure is the pascal (Pa)
A pascal can be defined as a force of one newton applied over a surface area of a one-meter square.