Isothermal Process and Pressure Calculation
The process is isothermal. For an isothermal process, \( P_1 V_1 = P_2 V_2 \).
\[ P_1 = P_0, \quad V_1 = \frac{4}{3} \pi r_1^3 \]
\[ P_2 = \frac{8P_0}{27}, \quad V_2 = \frac{4}{3} \pi r_2^3 \]
\[ P_1 V_1 = P_2 V_2 \quad \Rightarrow \quad P_0 \cdot r_1^3 = \frac{8P_0}{27} \cdot r_2^3 \]
Simplifying:
The excess pressure inside a bubble is:
\[ \Delta P \propto \frac{1}{r} \]
Substitute \( r_2 = 2r_1 \) into the equation:
\[ r_2 = 2r_1^3 \] \[ \Delta P = 4 \cdot T \cdot \frac{1}{r} \]
The ratio of the pressures is:
\[ \frac{\Delta P_2}{\Delta P_1} = \frac{r_1}{r_2} \] Substituting \( r_2 = 3r_1 \): \[ \frac{\Delta P_2}{144} = \frac{3}{2} \quad \Rightarrow \quad \Delta P_2 = \frac{2}{3} \cdot 144 = 96 \, \text{Pa} \]
The excess pressure inside the bubble is \( \Delta P_2 = 96 \, \text{Pa} \).
To solve this problem, we need to find the new excess pressure inside a soap bubble when the surrounding chamber pressure is reduced. The process is isothermal, and we are to assume the air behaves as an ideal gas.
1. Given:
2. Set Up the Equation:
From the relation \( P_{\text{in}} \propto \Delta P^3 \), we can write:
\[ \frac{P_1 + \Delta P_1}{P_2 + \Delta P_2} = \left( \frac{\Delta P_2}{\Delta P_1} \right)^3 \]
3. Plug in the Values:
Let the new excess pressure be \( \Delta P_2 = x \). Then the equation becomes:
\[ \frac{10^5 + 144}{29629.63 + x} = \left( \frac{x}{144} \right)^3 \]
4. Try \( x = 96 \):
Final Answer:
The new excess pressure inside the bubble is \( \boxed{96 \, \text{Pa}} \).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?