The value of \( \int \frac{(x^2-1)dx}{x^3\sqrt{2x^4 - 2x^2 + 1}} \) is
Inverse of the function \( f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} \) is
For \( a \in \mathbb{R} \), \( a \neq -1 \), \( \lim_{n \to \infty} \frac{1^a + 2^a + \dots + n^a}{(n+1)^{a-1}[(na+1)+(na+2)+\dots+(na+n)]} = \frac{1}{60} \). Then one of the values of a is