If \[ \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}, \] \(\text{then }\) [\(\mathbf{a}\) \(\mathbf{b}\) \(\mathbf{c}\)] \(\text{ depends on:}\)
Let \[ f(x) = \frac{x^2 - 1}{|x| - 1}. \] \(\text{Then the value of}\) \[ \lim_{x \to 1} f(x) \text{ is:} \]
If \( |x - 6| = |x^2 - 4x| - |x^2 - 5x + 6| \), \(\text{ where \( x \) is a real variable.}\)
The maximum value of \( f(x) = (x - 1)^2 (x + 1)^3 \) is equal to \[ \frac{2^p 3^q}{3125} \,\, \text{then the ordered pair of} (p, q) \text{ will be} \]
If \( n_1 \) and \( n_2 \) are the number of real valued solutions of \( x = |\sin^{-1} x| \) \(\text{and}\) \( x = \sin(x) \text{ respectively, then the value of} \, n_2 - n_1 \text{ is:}\)
If A and B are square matrices such that \( B = -A^{-1}BA \), \(\text{ then }\) \( (A + B)^2 \) is
A real valued function \( f \) is defined as \[ f(x) = \begin{cases} -1 & \text{if} \, -2 \leq x \leq 0 \\ x - 1 & \text{if} \, 0 \leq x \leq 2 \end{cases} \] \(\text{Which of the following statements is FALSE?}\)
If the equation \[ |x^2 - 6x + 8| = a \] \(\text{has four real solutions, then find the value of \( a \):}\)