We need to evaluate the integral \( I = \int_a^b (|x-a| + |x-b|) dx \).
The limits of integration are from \( a \) to \( b \), so for any \( x \) in this interval, we have \( a \leq x \leq b \).
Let's analyze the absolute value terms within this interval:
\[\begin{array}{rl} \bullet & \text{For \( x \geq a \), \( |x-a| = x-a \).} \\ \bullet & \text{For \( x \leq b \), \( |x-b| = -(x-b) = b-x \).} \\ \end{array}\]
So, within the interval \( [a, b] \), the integrand simplifies to:
\[ |x-a| + |x-b| = (x-a) + (b-x) = b-a \]
Now we can evaluate the integral:
\[ I = \int_a^b (b-a) dx \]
Since \( (b-a) \) is a constant, we can take it out of the integral.
\[ I = (b-a) \int_a^b 1 \, dx \]
\[ I = (b-a) [x]_a^b \]
\[ I = (b-a) (b-a) = (b-a)^2 \]