Let the height of the tower be \( h \), and let the foot of the tower be O. The points A, B, C are on a line leading to O. Let the distances of A, B, and C from the foot of the tower be \( OA, OB, OC \). From the angles of elevation, we have: \[\begin{array}{rl} \bullet & \text{From point A (angle 30\(^{\circ}\)): \( \tan(30^{\circ}) = \frac{h}{OA} \Rightarrow OA = \frac{h}{\tan(30^{\circ})} = h\sqrt{3} \)} \\ \bullet & \text{From point B (angle 45\(^{\circ}\)): \( \tan(45^{\circ}) = \frac{h}{OB} \Rightarrow OB = \frac{h}{\tan(45^{\circ})} = h \)} \\ \bullet & \text{From point C (angle 60\(^{\circ}\)): \( \tan(60^{\circ}) = \frac{h}{OC} \Rightarrow OC = \frac{h}{\tan(60^{\circ})} = \frac{h}{\sqrt{3}} \)} \\ \end{array}\] Since the angles of elevation are increasing (30, 45, 60), the points are getting closer to the tower. So the order is A, B, C, O. The distances between the points are: \[ AB = OA - OB = h\sqrt{3} - h = h(\sqrt{3} - 1) \] \[ BC = OB - OC = h - \frac{h}{\sqrt{3}} = h\left(1 - \frac{1}{\sqrt{3}}\right) = h\left(\frac{\sqrt{3} - 1}{\sqrt{3}}\right) \] Now we find the ratio of AB to BC: \[ \frac{AB}{BC} = \frac{h(\sqrt{3} - 1)}{h\left(\frac{\sqrt{3} - 1}{\sqrt{3}}\right)} \] \[ \frac{AB}{BC} = \frac{1}{1/\sqrt{3}} = \sqrt{3} \] So, the ratio \( AB:BC \) is \( \sqrt{3}:1 \).
If \( \cos^2(10^\circ) \cos(20^\circ) \cos(40^\circ) \cos(50^\circ) \cos(70^\circ) = \alpha + \frac{\sqrt{3}}{16} \cos(10^\circ) \), then \( 3\alpha^{-1} \) is equal to:
\( \text{A tower subtends angles a, 2a, and 3a respectively at points A, B, and C, which are lying on a horizontal line through the foot of the tower. Then }\) \( \frac{AB}{BC} \) \(\text{ is equal to:}\)