The volume of a parallelepiped formed by three vectors is given by the absolute value of their scalar triple product, which is calculated as the determinant of the matrix formed by their components. \[ V = |[\vec{a} \vec{b} \vec{c}]| = \left| \begin{vmatrix} 2 & 3 & 4 \\ 1 & \alpha & 2 \\ 1 & 2 & \alpha \end{vmatrix} \right| \] We are given that the volume is 15. \[ \left| \begin{vmatrix} 2 & 3 & 4 \\ 1 & \alpha & 2 \\ 1 & 2 & \alpha \end{vmatrix} \right| = 15 \] Let's evaluate the determinant: \[ 2(\alpha \cdot \alpha - 2 \cdot 2) - 3(1 \cdot \alpha - 2 \cdot 1) + 4(1 \cdot 2 - \alpha \cdot 1) \] \[ = 2(\alpha^2 - 4) - 3(\alpha - 2) + 4(2 - \alpha) \] \[ = 2\alpha^2 - 8 - 3\alpha + 6 + 8 - 4\alpha \] \[ = 2\alpha^2 - 7\alpha + 6 \]
So, we have the equation \( |2\alpha^2 - 7\alpha + 6| = 15 \). This gives two possibilities: \[\begin{array}{rl} 1. & \text{\( 2\alpha^2 - 7\alpha + 6 = 15 \Rightarrow 2\alpha^2 - 7\alpha - 9 = 0 \)} \\ 2. & \text{\( 2\alpha^2 - 7\alpha + 6 = -15 \Rightarrow 2\alpha^2 - 7\alpha + 21 = 0 \)} \\ \end{array}\]
For equation (2), the discriminant is \( D = b^2 - 4ac = (-7)^2 - 4(2)(21) = 49 - 168 < 0 \), so it has no real solutions.
For equation (1), \( 2\alpha^2 - 7\alpha - 9 = 0 \), we can factor it: \[ (2\alpha - 9)(\alpha + 1) = 0 \] This gives two possible values for \( \alpha \): \( \alpha = 9/2 \) or \( \alpha = -1 \). From the given options, \( \alpha = 9/2 \) is a valid solution.
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is: