This question relates to the Cauchy-Schwarz inequality. The inequality in its vector form states that for two vectors \( \vec{u} \) and \( \vec{v} \), \( (\vec{u} \cdot \vec{v})^2 \leq ||\vec{u}||^2 ||\vec{v}||^2 \).
Let's define two vectors in \( \mathbb{R}^n \):
\[ \vec{u} = (1, 1, 1, \ldots, 1) \]
\[ \vec{v} = (a_1, a_2, a_3, \ldots, a_n) \]
Now, let's calculate the components of the Cauchy-Schwarz inequality for these vectors.
\[\begin{array}{rl} \bullet & \text{Dot product: \( \vec{u} \cdot \vec{v} = 1 \cdot a_1 + 1 \cdot a_2 + \ldots + 1 \cdot a_n = \sum_{i=1}^n a_i \)} \\ \bullet & \text{Squared norm of \( \vec{u} \): \( ||\vec{u}||^2 = 1^2 + 1^2 + \ldots + 1^2 = n \)} \\ \bullet & \text{Squared norm of \( \vec{v} \): \( ||\vec{v}||^2 = a_1^2 + a_2^2 + \ldots + a_n^2 = \sum_{i=1}^n a_i^2 \)} \\ \end{array}\]
Substitute these into the inequality \( (\vec{u} \cdot \vec{v})^2 \leq ||\vec{u}||^2 ||\vec{v}||^2 \):
\[ \left(\sum_{i=1}^n a_i\right)^2 \leq (n) \left(\sum_{i=1}^n a_i^2\right) \]
Rearranging this gives:
\[ n \sum_{i=1}^n a_i^2 \geq \left(\sum_{i=1}^n a_i\right)^2 \]
This matches option (B).