If \( (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \), then
If \( x^m y^n = (x+y)^{m+n} \), then \( \frac{dy}{dx} \) is
The function \( f(x) = \begin{cases} (1+2x)^{1/x}, & x \neq 0 \\ e^2, & x=0 \end{cases} \) is
If \( D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2+x & 1 \\ 1 & 1 & 2+y \end{vmatrix} \) for \( x \neq 0, y \neq 0 \), then D is
The domain of the function \( f(x) = \frac{\cos^{-1}x}{[x]} \) is