Given:
\[
y = x^x + x^x = 2x^x
\]
To differentiate \( x^x \), we rewrite it using logarithmic differentiation:
Let \( u = x^x \Rightarrow \ln u = x \ln x \)
Differentiating both sides:
\[
\frac{1}{u} \cdot \frac{du}{dx} = \ln x + 1 \Rightarrow \frac{du}{dx} = x^x(\ln x + 1)
\]
Now, since \( y = 2x^x \), we get:
\[
\frac{dy}{dx} = 2 \cdot \frac{d}{dx}(x^x) = 2x^x(\ln x + 1)
\]