We know that:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Given \( \sin \theta = \frac{3}{5} \), we can substitute into the equation:
\[
\left( \frac{3}{5} \right)^2 + \cos^2 \theta = 1
\]
\[
\frac{9}{25} + \cos^2 \theta = 1
\]
\[
\cos^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25}
\]
\[
\cos \theta = \frac{4}{5}
\]
Thus, the value of \( \cos \theta \) is \( \frac{4}{5} \). Therefore, the correct answer is option (1).