>
Mathematics
List of top Mathematics Questions
$20$
persons are invited for a party In how many different ways can they and the host be seated at circular table, if the two particular persons are to be seated on either side of the host?
Mathematics
permutations and combinations
What is the value of
$\tan^{-1} \left(\frac{m}{n}\right) - \tan^{-1} \left(\frac{m-n}{m+n}\right) ? $
Mathematics
Inverse Trigonometric Functions
The number of positive integral solutions of the equation
$\tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 , $
is
Mathematics
Inverse Trigonometric Functions
The value of
$\cos \left(\frac{1}{2} \cos^{-1} \frac{1}{8}\right) $
is equal to
Mathematics
Inverse Trigonometric Functions
In a
$\Delta ABC$
, if
$A = tan^{-1}\, 2$
and
$B = tan^{ -1}\, 3$
, then
$C =$
Mathematics
Inverse Trigonometric Functions
$sin^{-1}\left(\frac{1}{\sqrt{e}}\right)> tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) $
$sin^{-1}\,x>tan^{-1}\,y$
for
$x>y, \forall \,x, y \,\in\left(0, 1\right)$
Mathematics
Inverse Trigonometric Functions
The value of
$cot^{-1}\left\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\}\left(0 < x < \frac{\pi}{2}\right)$
is
Mathematics
Inverse Trigonometric Functions
$2^{\frac{1}{4}}, 4^{\frac{1}{8}}, 8^{\frac{1}{16}}, 16^{\frac{1}{32}}............ $
is equal to
Mathematics
Sequence and series
$11^{3}-10^{3} +9^{3} -8^{3} +7^{3}-6^{3} +5^{3}-4^{3}+3^{3}-2^{3}+1^{3}= $
Mathematics
Sequence and series
$(100)^{50} + (99)^{50}$
Mathematics
Binomial theorem
If
$x = a + b, y = a \omega +b \omega ^2$
and
$z = a \omega^2 + b \omega$
, then which one of the following is true.
Mathematics
Complex Numbers and Quadratic Equations
If
$b$
and
$c$
are odd integers, then the equation
$x^2 + bx + c = 0$
has
Mathematics
Complex Numbers and Quadratic Equations
The principal value of the
$arg (z)$
and
$ | z |$
of the complex number
$z=1+\cos\left(\frac{11\pi}{9}\right)+ i \, \sin\frac{11\pi}{9}$
are respectively
Mathematics
Complex Numbers and Quadratic Equations
$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$
is equal to :
Mathematics
Complex Numbers and Quadratic Equations
If
$P$
is the affix of
$z$
in the Argand diagram and
$P$
moves so that
$\frac{z-i}{z-1}$
is always purely imaginary, then locus of
$z$
is
Mathematics
Complex Numbers and Quadratic Equations
The value of $ \begin{vmatrix} b+c&a&a\\ b &c+a &b\\ c & c &a+b \end{vmatrix}$ is
Mathematics
Matrices
If the three linear equations
$x + 4ay + az = 0$
$x + 3 by + bz = 0$
and
$x + 2cy + cz = 0$
have a non-trivial solution, then a, b, c are in
Mathematics
Matrices
The matrix 'X' in the equation
$AX = B$
, such that
$A = \begin{bmatrix}1&3\\ 0&1\end{bmatrix}$
and
$ B = \begin{bmatrix}1&-1\\ 0&1\end{bmatrix}$
is given by
Mathematics
Matrices
The only integral root of the equation $ \begin{vmatrix} 2-y &2&3\\ 2 &5-y &6\\ 3 & 4 & 10-y \end{vmatrix}$=0 is
Mathematics
Matrices
$B$ is an extremity of the minor axis of an ellipse whose foci are $S$ and $S'$. If $?SBS'$ is a right angle, then the eccentricity of the ellipse is
Mathematics
Ellipse
Which of the following functions are one-one and onto ?
Mathematics
Sets
The value of
$ \frac{\cos 30{}^\circ +i\sin 30{}^\circ }{\cos 60{}^\circ -i\sin 60{}^\circ } $
is equal to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
Let
$S(n)$
denote the sum of the digits of a positive integer n. e.g.
$S(178)=1+$
$7+8=16 .$
Then, the value of
$S(1)+S(2)+S(3)+\ldots+S(99)$
is
KEAM
Mathematics
Sequence and series
$ \int{(x+1){{(x+2)}^{7}}}(x+3)dx $
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
$ \int{\frac{\sec x cosec x}{2\cot x-\sec x\cos ecx}}dx $
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
Prev
1
...
798
799
800
801
Next