Let the first term of these A.P.s be \(a_1\) and \(a_2\) respectively and the common difference of these A.P.s be d.
For first A.P.,
\(a_{100} = a_1 + (100 − 1)d\) \(= a_1 + 99d\)
\(a_{1000} = a_1 + (1000 − 1) d\) \(= a_1 + 999d\)
For second A.P.,
\(a_{100} = a_2 + (100 − 1) d\) \(= a_2 + 99d\)
\(a_{1000} = a_2 + (1000 − 1) d = a_2 + 999d\)
Given that, difference between 100th term of these A.P.s = 100
Therefore,
\((a_1 + 99d) − (a_2 + 99d) = 100\)
\(a_1 − a_2 = 100 ……(1)\)
Difference between 1000th terms of these A.P.s
\((a_1 + 999d) − (a_2 + 999d) = a_1 − a_2\)
From equation (1),
This difference, \(a_1 − a_2 = 100\)
Hence, the difference between 1000th terms of these A.P. will be 100.
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
Let $a_1, a_2, \ldots, a_n$ be in AP If $a_5=2 a_7$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।