Let the first term of these A.P.s be \(a_1\) and \(a_2\) respectively and the common difference of these A.P.s be d.
For first A.P.,
\(a_{100} = a_1 + (100 − 1)d\) \(= a_1 + 99d\)
\(a_{1000} = a_1 + (1000 − 1) d\) \(= a_1 + 999d\)
For second A.P.,
\(a_{100} = a_2 + (100 − 1) d\) \(= a_2 + 99d\)
\(a_{1000} = a_2 + (1000 − 1) d = a_2 + 999d\)
Given that, difference between 100th term of these A.P.s = 100
Therefore,
\((a_1 + 99d) − (a_2 + 99d) = 100\)
\(a_1 − a_2 = 100 ……(1)\)
Difference between 1000th terms of these A.P.s
\((a_1 + 999d) − (a_2 + 999d) = a_1 − a_2\)
From equation (1),
This difference, \(a_1 − a_2 = 100\)
Hence, the difference between 1000th terms of these A.P. will be 100.
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
"ई काशी छोड़कर कहीं न जाएँ" बिस्मिल्ला खाँ के मन में काशी के प्रति विशेष अनुराग के क्या कारण थे ?