First three-digit number that is divisible by \(7 = 105\)
Next number \(= 105 + 7 = 112\)
Therefore, \(105, 112, 119, ….\)
All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as \(105\) and common difference as \(7\).
The maximum possible three-digit number is \(999\).
When we divide it by 7, the remainder will be \(5\).
Clearly, \(999 − 5 = 994\) is the maximum possible three-digit number that is divisible by \(7\).
The series is as follows.
\(105, 112, 119, …, 994\)
Let \(994\) be the nth term of this A.P.
\(a = 105\), \(d = 7\) and \(a_n = 994\), \(n = ?\)
\(a_n = a + (n − 1) d\)
\(994 = 105 + (n − 1)7\)
\(889 = (n − 1)7\)
\(n − 1 = 127\)
\(n = 128\)
Therefore, \(128\) three-digit numbers are divisible by \(7\).
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
Let $a_1, a_2, \ldots, a_n$ be in AP If $a_5=2 a_7$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to
How is the brain protected in our body?
आप नव्या / भव्य हैं। विद्यालय में नामांकन के समय आपकी जन्मतिथि गलत दर्ज हो गई है। दसवीं के पंजीकरण से पहले आप इसे सुधरवाना चाहते हैं। जन्मतिथि में सुधार हेतु निवेदन करते हुए प्रधानाचार्य को लगभग 80 शब्दों में एक ई-मेल लिखिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।