(i) \((x + 1)^2 = 2(x – 3) ⇒ x^2 + 2x + 1 = 2x -6 ⇒ x^2 +7 =0\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
(ii) \(x^2 – 2x = (–2) (3 – x) ⇒ x^2 -2x = -6 + 2x ⇒ x^2 -4x +6\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
(iii) \((x – 2)(x + 1) = (x – 1)(x + 3) ⇒ x^2 -x-2 = x^2 +2x -3 ⇒ 3x-1\)
It is not of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is not a quadratic equation.
(iv) \((x – 3)(2x +1) = x(x + 5) ⇒ 2x^2 -5x -3 = x^2 +5x ⇒ x^2 -10x -3\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
(v) \((2x – 1)(x – 3) = (x + 5)(x – 1) ⇒ 2x^2 -7x +3 = x^2 +4x -5 ⇒ x^2-11x +8 =0\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
(vi) \(x^2 + 3x + 1 = (x – 2)^2 ⇒ x^2 +3x +1 = x^2 +4 -4x ⇒7x -3 =0\)
It is not of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is not a quadratic equation.
(vii) \((x + 2)^3 = 2x (x^2 – 1) ⇒x^3 +8 +6x^2 +12x ⇒ 2x^3 -2x ⇒ x^2 -14x -6x^2 -8=0\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
(viii) \(x^3 – 4x^2 – x + 1 = (x – 2)^3 ⇒ x^3 -4x^2 -x +1 = x^3 -8-6x^2 +12x ⇒ 2x^2 -13x +9\)
It is of the form \(ax^2 + bx +c =0.\)
Hence, the given equation is a quadratic equation.
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation