First multiple of \(4\) that is greater than \(10\) is \(12\). Next will be \(16\).
Therefore, \(12, 16, 20, 24, ….\)
All these are divisible by \(4\) and thus, all these are terms of an A.P. with first term as \(12\) and common difference is \(4\).
When we divide \(250\) by \(4\), the remainder will be \(2\).
Therefore, \(250 − 2 = 248\) is divisible by \(4\).
The series is as follows.
\(12, 16, 20, 24, …, 248\)
Let \(248\) be the nth term of this A.P.
\(a = 12\)
\(d = 4\)
\(a_n = 248\)
\(a_n = a + (n-1)d\)
\(248 = 12 + (n-1)4\)
\(\frac {236}{4} = n-1\)
\(59 = n-1\)
\(n = 60\)
Therefore, there are \(60\) multiples of \(4\) between \(10\) and \(250\).
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
"ई काशी छोड़कर कहीं न जाएँ" बिस्मिल्ला खाँ के मन में काशी के प्रति विशेष अनुराग के क्या कारण थे ?