Question:

How many multiples of 4 lie between 10 and 250?

Updated On: Nov 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

First multiple of \(4\) that is greater than \(10\) is \(12\). Next will be \(16\).
Therefore, \(12, 16, 20, 24, ….\)
All these are divisible by \(4\) and thus, all these are terms of an A.P. with first term as \(12\) and common difference is \(4\).
When we divide \(250\) by \(4\), the remainder will be \(2\).
Therefore, \(250 − 2 = 248\) is divisible by \(4\).
The series is as follows.
\(12, 16, 20, 24, …, 248\)
Let \(248\) be the nth term of this A.P.
\(a = 12\)
\(d = 4\)
\(a_n = 248\)
\(a_n = a + (n-1)d\)
\(248 = 12 + (n-1)4\)
\(\frac {236}{4} = n-1\)
\(59 = n-1\)
\(n = 60\)

Therefore, there are \(60\) multiples of \(4\) between \(10\) and \(250\).

Was this answer helpful?
0
0