\(a_3 = 16\)
\(a + (3 – 1) d = 16\)
\(a + 2d = 16 \) \(……….(1)\)
\(a_7 − a_5 = 12\)
\(a_7 − a_5 = 12 [a+ (7 − 1) d] − [a + (5 − 1) d] = 12\)
\((a + 6d) − (a + 4d) = 12\)
\(2d = 12\)
\(d = 6\)
From equation (1), we obtain
\(a + 2 (6) = 16\)
\(a + 12 = 16\)
\(a = 4\)
Therefore, A.P. will be \(4, 10, 16, 22, ….\)
Let $a_1, a_2, \ldots, a_n$ be in AP If $a_5=2 a_7$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :