>
Mathematics
List of top Mathematics Questions
$\displaystyle \lim_{x \to 0}$
$\left(cos\,x+sin\,x\right)^{\frac{1}{x}}$
equals
Mathematics
limits and derivatives
$\displaystyle\int_{1/2}^{2}|\log_{10}\,x|dx= $
Mathematics
integral
$\displaystyle \lim_{h \to 0}$
$\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}=$
Mathematics
limits and derivatives
Differential coefficient of
$\sqrt{sec\sqrt{x}}$
is
Mathematics
Continuity and differentiability
Differential coefficient of
$tan^{-1} \frac{2x}{1-x^{2}}$
with respect to
$sin^{-1} \frac{2x}{1+x^{2}}$
will be
Mathematics
Continuity and differentiability
Differential co-efficient of
$\log_{10} x $
w.r.t.
$log_x 10$
is
Mathematics
limits and derivatives
Derivative of the function
$f(x) = log_5(log_7x)$
,
$x > 7$
is
Mathematics
Continuity and differentiability
Derivative of
$\sec^{-1} \left( \frac{1}{2x^2 + 1 } \right)$
w.r.t.
$\sqrt{ 1 + 3x} $
at
$x = - \frac{1}{3}$
is
Mathematics
limits and derivatives
Derivative of the function
$f(x) = 7x^{-3} $
is
Mathematics
limits and derivatives
$\Delta =\begin{vmatrix} sin^2x & cos^2x & 1 \\[0.3em] cos^2x &sin^2x & 1 \\[0.3em] -10 & 12& 2 \end{vmatrix}$
Mathematics
Matrices
$\frac{d}{dx}\left\{cosec^{-1}\left(\frac{1+x^{2}}{2x}\right)\right\}$
is equal to
Mathematics
Continuity and differentiability
$\frac{d}{dx}\left(tan^{-1}\left(\frac{\sqrt{x}-\sqrt{a}}{1+\sqrt{xa}}\right)\right)$
,
$x$
,
$a > 0$
, is
Mathematics
Continuity and differentiability
If $ lim_{ x \to 0 } [ 1 + x \, log \, (1 + b^2) ]^{\frac{1}{x}} = 2 b sin^2 \, \theta, b > 0 \, and \, \theta \in ( - \pi , \pi),
$ then the value of $
\theta $ is
Mathematics
limits and derivatives
$\frac{d^{2}x}{dy^{2}} $
equals :
Mathematics
Continuity and differentiability
$\frac{d}{dx} \left[a \tan^{-1} x+ b \log \left(\frac{x-1}{x1}\right)\right] = \frac{1}{x^{4} -1}\Rightarrow a - 2b= $
Mathematics
limits and derivatives
$\cot^{-1} (2 + \sqrt{3}) = $
Mathematics
Inverse Trigonometric Functions
$cot\left(cosec^{-1} \frac{5}{3} + tan^{-1} \frac{2}{3}\right) = $
Mathematics
Inverse Trigonometric Functions
$cot\left(\frac{\pi}{4}-2\,cot^{-1}\,3\right) = $
Mathematics
Inverse Trigonometric Functions
$\cos\left(\sin^{-1} \frac{5}{13}\right) = $
Mathematics
Inverse Trigonometric Functions
$cos[tan^{-1}\{sin(cot^{-1}x)\}]$
is equal to
Mathematics
Inverse Trigonometric Functions
$\cos^2 \, 1^\circ + cos^2 2^0 + cos^2 \, 3^0 + ... + \cos^2 \, 90^\circ$
=
Mathematics
Trigonometric Functions
$\cos \theta .\cos(90 - \theta) - \sin \theta \sin (90 - \theta)$
equals:
Mathematics
Trigonometric Functions
$\cos^{-1} ( \frac{\sqrt{5} -1}{4} ) = $
Mathematics
Inverse Trigonometric Functions
$\cos^{-1}(\cos\,x)=x$
is satisfied by
Mathematics
Inverse Trigonometric Functions
Convert
$240^{\circ}$
into radian.
Mathematics
Trigonometric Functions
Prev
1
...
791
792
793
794
795
...
801
Next