>
Mathematics
List of top Mathematics Questions
$4\,tan^{-1} \frac{1}{5} -tan^{-1} \frac{1}{70} + tan^{-1} \frac{1}{99}$
is equal to
Mathematics
Inverse Trigonometric Functions
$4 a^2 \, \sin^2 \left( \frac{3\pi}{4} \right) - 3 [a\, \tan \,225^\circ ]^2 + [ 2a \, \cos \, 315^\circ ]^2$
Mathematics
Trigonometric Functions
$3\,\tan^{-1}a$
is equal to
Mathematics
Inverse Trigonometric Functions
$\sqrt{-3}\sqrt{-6}$
is equal to
Mathematics
Complex Numbers and Quadratic Equations
$|2x - 3| < |x + 5|$
, then
$x$
belongs to
Mathematics
linear inequalities
$\sqrt{2i}$
is equal to
Mathematics
Complex Numbers and Quadratic Equations
$20$
persons are invited for a party In how many different ways can they and the host be seated at circular table, if the two particular persons are to be seated on either side of the host?
Mathematics
permutations and combinations
What is the value of
$\tan^{-1} \left(\frac{m}{n}\right) - \tan^{-1} \left(\frac{m-n}{m+n}\right) ? $
Mathematics
Inverse Trigonometric Functions
The number of positive integral solutions of the equation
$\tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 , $
is
Mathematics
Inverse Trigonometric Functions
The value of
$\cos \left(\frac{1}{2} \cos^{-1} \frac{1}{8}\right) $
is equal to
Mathematics
Inverse Trigonometric Functions
In a
$\Delta ABC$
, if
$A = tan^{-1}\, 2$
and
$B = tan^{ -1}\, 3$
, then
$C =$
Mathematics
Inverse Trigonometric Functions
$sin^{-1}\left(\frac{1}{\sqrt{e}}\right)> tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) $
$sin^{-1}\,x>tan^{-1}\,y$
for
$x>y, \forall \,x, y \,\in\left(0, 1\right)$
Mathematics
Inverse Trigonometric Functions
The value of
$cot^{-1}\left\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\}\left(0 < x < \frac{\pi}{2}\right)$
is
Mathematics
Inverse Trigonometric Functions
$2^{\frac{1}{4}}, 4^{\frac{1}{8}}, 8^{\frac{1}{16}}, 16^{\frac{1}{32}}............ $
is equal to
Mathematics
Sequence and series
$11^{3}-10^{3} +9^{3} -8^{3} +7^{3}-6^{3} +5^{3}-4^{3}+3^{3}-2^{3}+1^{3}= $
Mathematics
Sequence and series
$(100)^{50} + (99)^{50}$
Mathematics
Binomial theorem
If
$x = a + b, y = a \omega +b \omega ^2$
and
$z = a \omega^2 + b \omega$
, then which one of the following is true.
Mathematics
Complex Numbers and Quadratic Equations
If
$b$
and
$c$
are odd integers, then the equation
$x^2 + bx + c = 0$
has
Mathematics
Complex Numbers and Quadratic Equations
The principal value of the
$arg (z)$
and
$ | z |$
of the complex number
$z=1+\cos\left(\frac{11\pi}{9}\right)+ i \, \sin\frac{11\pi}{9}$
are respectively
Mathematics
Complex Numbers and Quadratic Equations
$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$
is equal to :
Mathematics
Complex Numbers and Quadratic Equations
If
$P$
is the affix of
$z$
in the Argand diagram and
$P$
moves so that
$\frac{z-i}{z-1}$
is always purely imaginary, then locus of
$z$
is
Mathematics
Complex Numbers and Quadratic Equations
The value of $ \begin{vmatrix} b+c&a&a\\ b &c+a &b\\ c & c &a+b \end{vmatrix}$ is
Mathematics
Matrices
If the three linear equations
$x + 4ay + az = 0$
$x + 3 by + bz = 0$
and
$x + 2cy + cz = 0$
have a non-trivial solution, then a, b, c are in
Mathematics
Matrices
The matrix 'X' in the equation
$AX = B$
, such that
$A = \begin{bmatrix}1&3\\ 0&1\end{bmatrix}$
and
$ B = \begin{bmatrix}1&-1\\ 0&1\end{bmatrix}$
is given by
Mathematics
Matrices
The only integral root of the equation $ \begin{vmatrix} 2-y &2&3\\ 2 &5-y &6\\ 3 & 4 & 10-y \end{vmatrix}$=0 is
Mathematics
Matrices
Prev
1
...
789
790
791
792
Next