Let f(x) = sin x + cos x
=f'(x)=cos x-sinx
f'(x)=0=sinx=cos x=tanx=1=\(\frac{\pi}{4},\frac{5\pi}{4}\)....,
f''(x)=-sinx-cos x=-(sinx+cos x)
Now, f\(\times\)(x) will be negative when (sin x + cos x) is positive i.e., when sin x and cos x are both positive. Also, we know that sin x and cos x both are positive in the first
quadrant. Then, f\(\times\)(x) will be negative when x∈(0,\(\frac{\pi}{2}\)).
Thus, we consider x=\(\frac{\pi}{4}\).
f\(\times\)(\(\frac{\pi}{4}\))=-(sin \(\frac{\pi}{4}\)+cos \(\frac{\pi}{4}\))=-(\(\frac{2}{\sqrt2}\))=\(-\sqrt2<0\)
∴ By the second derivative test, f will be the maximum at x=π/4. and the maximum value of f is f(\(\frac{\pi}{4}\))=sin \(\frac{\pi}{4}\).+cos \(\frac{\pi}{4}\)=\(\frac{1}{\sqrt2}\times \frac{1}{\sqrt2}\)=\(\frac{2}{\sqrt2}\)=\(\sqrt2\)
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: