Let f(x) = sin x + cos x
=f'(x)=cos x-sinx
f'(x)=0=sinx=cos x=tanx=1=\(\frac{\pi}{4},\frac{5\pi}{4}\)....,
f''(x)=-sinx-cos x=-(sinx+cos x)
Now, f\(\times\)(x) will be negative when (sin x + cos x) is positive i.e., when sin x and cos x are both positive. Also, we know that sin x and cos x both are positive in the first
quadrant. Then, f\(\times\)(x) will be negative when x∈(0,\(\frac{\pi}{2}\)).
Thus, we consider x=\(\frac{\pi}{4}\).
f\(\times\)(\(\frac{\pi}{4}\))=-(sin \(\frac{\pi}{4}\)+cos \(\frac{\pi}{4}\))=-(\(\frac{2}{\sqrt2}\))=\(-\sqrt2<0\)
∴ By the second derivative test, f will be the maximum at x=π/4. and the maximum value of f is f(\(\frac{\pi}{4}\))=sin \(\frac{\pi}{4}\).+cos \(\frac{\pi}{4}\)=\(\frac{1}{\sqrt2}\times \frac{1}{\sqrt2}\)=\(\frac{2}{\sqrt2}\)=\(\sqrt2\)
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).

The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as: