Question:

Differentiate the following w.r.t. x: \(\frac {e^x}{sin\ x}\)

Updated On: Nov 6, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

let y = \(\frac {e^x}{sin\ x}\)
By using the quotient rule, we obtain

\(\frac {dy}{dx}\) = \(\frac {sin\ x.\frac {d}{dx}(e^x)-e^x\frac {d}{dx}(sin\ x)}{sin^2x}\)

\(\frac {dy}{dx}\) = \(\frac {sin\ x.{(e^x)}-e^x(cos\ x)}{sin^2x}\)

 \(\frac {dy}{dx}\) = \(\frac {e^x(sin\ x-cos\ x)}{sin^2x}\), x ≠ n\(\pi\), n∈Z

Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Differentiability

Differentiability of a function A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a
\(\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
⇒ f'(a – 0) = f'(a + 0)
⇒ left-hand derivative = right-hand derivative.
Thus function f is said to be differentiable if left hand derivative & right hand derivative both exist finitely and are equal.
If f(x) is differentiable then its graph must be smooth i.e. there should be no break or corner.
Note:
(i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability ⇒ continuity but continuity ⇏ differentiability

(ii) For any curve y = f(x), if at any point \(\frac{d y}{d x}\) = 0 or does not exist then, the point is called “critical point”.

3. Differentiability in an interval
(a) A function fx) is said to be differentiable in an open interval (a, b), if it is differentiable at every point of the interval.

(b) A function f(x) is differentiable in a closed interval [a, b] if it is

  • Differentiable at every point of interval (a, b)
  • Right derivative exists at x = a
  • Left derivative exists at x = b.