Question:

Differentiate w.r.t. \(x\) the function: \((3x^2-9x+5)^9\)

Updated On: Nov 6, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The correct answer is \(=27(3x^2-9x+5)^8(2x-3)\)
Let \(y=(3x^2-9x+5)^9\)
Using chain rule, we obtain
\(\frac{dy}{dx}=\frac{d}{dx}(3x^2-9x+5)^9)\)
\(=9(3x^2-9x+5)^8.\frac{d}{dx}(3x^2-9x+5)\)
\(=9(3x^2-9x+5)^8.(6x-9)\)
\(=9(3x^2-9x+5)^8.3(2x-3)\)
\(=27(3x^2-9x+5)^8(2x-3)\)
Was this answer helpful?
1
0

Top Questions on Continuity and differentiability

View More Questions