cos 60°
sin 60°
tan 60°
sin 30°
\(\frac{2\ tan\ 30°}{1 - tan^2 30°}\)
\(=\frac{ 2 × \left(\frac{1}{\sqrt3}\right) }{ 1 - \left(\frac{1}{\sqrt3}\right)^2}\)
\(= \frac{\left(\frac{2}{\sqrt3}\right) }{ \left(1 - \frac{1}{3}\right)}\)
\(= \frac{\left(\frac{2}{\sqrt3}\right) }{ \left(\frac{2}{3}\right)}\)
\(= \sqrt3\)
Out of the given option only tan 60° \(= \sqrt3\).
Hence, option (C) is correct.
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a