>
Mathematics
List of top Mathematics Questions
If
$^nC_{r-1}=28,\,^nC_r =56$
and
$^nC_{r+1}=70$
, then
$r =$
Mathematics
permutations and combinations
If
$n(\mu) = 48 , n(A) = 28, n(B) = 33$
and
$n(B - A) = 12$
, then
$n(A \cap B)^C$
is
Mathematics
Sets
If n is an integer between 0 and 21, then the minimum value of
$n ! (21 - n) !$
is
Mathematics
permutations and combinations
If n is a positive integer, then the number of terms in the expansion of
$[x + a]^n$
is
Mathematics
Binomial theorem
If
$N$
be the set of all natural numbers, consider
$f$
:
$N \to N$
such that
$f(x) = 2x$
,
$\forall\, x \in N$
, then
$f$
is
Mathematics
Relations and functions
If n = 1 , 2, 3, ..... , then
$\cos \, \alpha \, \cos \, 2\alpha \, \cos \, 2^2 \alpha \, \cos \, 2^3 \, \alpha . ..... \cos \, 2^{n-1} \alpha $
is equal to
Mathematics
Trigonometric Functions
If
${^{n + 2}C_8} : {^{n - 2}P_4} = 57 : 16,$
then the value of n is:
Mathematics
permutations and combinations
If
$n (A) = 3$
and
$n (B) = 5$
, then the number of one-one functions that can be defined from A to B is
Mathematics
Sets
If
$N_a = \{an, n \in N\}$
, then
$N_3 \cap N_5$
is equal to
Mathematics
Sets
If mean of the n observations
$ {x_1, x_2, x_3,... x_n}$
be
$\bar{x}$
, then the mean of n observations
$ {2x_1 + 3, 2x_2 + 3, 2x_3 + 3, ...., 2x_{n} + 3}$
is
Mathematics
Statistics
If
$m$
is a root of the equation
$(1 - ab) x^2 - (a^2 + b^2) x - (1 + ab) = 0$
, and
$m$
harmonic means are inserted between
$a$
and
$b$
, then the difference between the last and the first of the means equals
Mathematics
Sequence and series
If
$m = \tan \, \theta + \sin \, \theta$
and
$n = \tan \, \theta - \sin \, \theta$
, then
$(m^2 - n^2)^2$
is equal to
Mathematics
Trigonometric Functions
If
$\int\limits^{\infty}_{{0}}e^{-ax}dx=\frac{1}{a},$
then
$\int\limits^{\infty}_{{0}}x^n\,e^{-ax}dx$
is
Mathematics
integral
If k
$\notin$
[0, 8], find the value of x for which the inequality
$ {\frac{x^2 + k^2}{k(6 + x)} \geq 1}$
is satisfied.
Mathematics
linear inequalities
If
$k \le \sin^{-1} x + \cos^{-1} x + \tan^{-1 } x \le K$
, then
Mathematics
Inverse Trigonometric Functions
if
$\int\limits_{a}^{b} \frac{x^{n}}{x^{n} + \left(16 - x\right)^{n}} dx = 6$
, then
Mathematics
integral
If
$\int^{2}_{-3} f\left(x\right)dx = \frac{7}{3} $
and
$\int^{9}_{-3} f\left(x\right)dx = - \frac{5}{6} , $
then what is the value of
$\int^{9}_{2} f\left(x\right)dx $
?
Mathematics
integral
If
$ \int\frac{dx}{\left(x+2\right)\left(x^{2} +1\right)} = a log\left|1+x^{2}\right| +b tan^{-1} x +\frac{1}{5}log\left|x+2\right|+C$
, then
Mathematics
integral
If in a triangle ABC, tanA + tanB + tanC = 6 and tan A tan B = 2, then the triangle is
Mathematics
Trigonometric Identities
If in a moderately asymmetrical distribution, mode and mean of the data are 6
$\lambda$
. and 9
$\lambda$
. respectively, then median is
Mathematics
Statistics
If
$I_1=\int\limits_{e} ^{_e2}\frac{dx}{\log\,x}$
and
$I_2=\int\limits_{1} ^{2}\frac{e^x}{x}dx$
, then
Mathematics
integral
If H be the Harmonic mean between a and b, then the value of
$\frac{1}{H-a}+ \frac{1}{H-b}$
is
Mathematics
Sequence and series
If
$h\left(x\right)=\frac{2+x^{2}}{2-x^{2}}$
,
$h'\left(1\right)=$
Mathematics
limits and derivatives
If
$g(x) = 1 + \sqrt{x}$
and
$f [g (x)] = 3 + \sqrt{2} x + x $
, then f(x) =
Mathematics
Relations and functions
If
$g$
is the inverse function of
$f$
and
$f '(x) = sin\, x$
, then
$g '(x)$
is
Mathematics
Continuity and differentiability
Prev
1
...
729
730
731
732
733
...
751
Next