Question:

Let \(A=\begin{bmatrix}1&-2&1\\ -2&3&1\\ 1&1&5\end{bmatrix}\)verify that -
\((i)[adjA]^{-1}=adj(A^{-1})\)
\((ii)(A^{-1})^{-1}=A\)

Updated On: Aug 6, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(A=\begin{bmatrix}1&-2&1\\ -2&3&1\\ 1&1&5\end{bmatrix}\)
\(∴|A|=1(15-1)+2(-10-1)+1(-2-3)=14-22-5=-13\)
Now,\(A_{11}=14,A_{12}=11,A_{13}=-5\)
\(A_{21}=11,A_{22}=4,A_{23}=-3\)
\(A_{31}=-5,A_{32}=-3,A_{33}=-1\)
\(∴adjA=\begin{bmatrix}14& 11& -5\\ 11& 4& -3\\ -5& -3& -1\end{bmatrix}\)
\(∴A^{-1}=\frac{1}{|A|}(adjA)\)
\(=\frac{-1}{13}\begin{bmatrix}14& 11& -5\\ 11& 4& -3\\ -5& -3& -1\end{bmatrix}\)
\(=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\ -11& -4& 3\\ 5& 3& 1\end{bmatrix}\)
\((i)|adjA|=14(-4-9)-11(-11-15)-5(-33+20)\)
\(=14(-13)-11(-26)-5(-13)\)
\(=-182+286+65=169\)
we have,
\(adj(adjA)=\begin{bmatrix}-13& 26& -13\\ 26& -39& -13\\ -13& -13& 65\end{bmatrix}\)
\(∴[adjA]^{-1}=\frac{1}{|adjA|}(adj(adjA))\)
\(\frac{1}{169}\begin{bmatrix}-13& 26& -13\\ 26& -39& -13\\ -13& -13& 65\end{bmatrix}\)
\(=\frac{1}{13}\begin{bmatrix}-1&2&-1\\ 2&-3&-1\\ -1&-1&-5\end{bmatrix}\)
Now,\(A^{-1}=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\ -11& -4& 3\\ 5& 3& 1\end{bmatrix}=\begin{bmatrix}\frac{-14}{13}& \frac{-11}{13}& \frac{5}{13}\\ \frac{-11}{13}& \frac{-4}{13}& \frac{3}{13}\\ \frac{5}{13}& \frac{3}{13}& \frac{1}{13}\end{bmatrix}\)
\(∴adj(A^{-1})=\begin{bmatrix}-4/169-9/169& -(-11/169-15/169)& -33/169+20/169\\ -(-11/169-15/169)& -14/169-25/169& -(-42/169+55/169)\\ -33/169+20/169& -(-42/169+55/169)& 56/169-121/169\end{bmatrix}\)
\(=\frac{1}{169}\begin{bmatrix}-13& 26& -13\\ 26& -39& -13\\ -13& -13& 65\end{bmatrix}\)
\(=\frac{1}{13}\begin{bmatrix}-1&2&-1\\ 2&-3&-1\\ -1&-1&-5\end{bmatrix}\)
\(Hence,[adjA]^{-1}=adj(A^{-1}).\)
(ii) we have shown that 
\(A^{-1}=\frac{1}{13}\begin{bmatrix}-14& -11& 5\\ -11& -4& 3\\ 5& 3& 1\end{bmatrix}\)
And,\(adjA^{-1}=\frac{1}{13}\begin{bmatrix}-1&2&-1\\ 2&-3&-1\\ -1&-1&-5\end{bmatrix}\)Now,
\(|A^{-1}|=(\frac{1}{13})^3[-14\times(-13)+11\times(-26)+5\times(-13)]=(\frac{1}{13})^3\times(-169)=\frac{-1}{13}\)
\(∴(A^{-1})^{-1}=\frac{adjA^{-1}}{|A-1|}=\frac{1}{(\frac{-1}{13})}\times\frac{1}{13}\begin{bmatrix}-1&2&-1\\ 2&-3&-1\\ -1&-1&-5\end{bmatrix}=\begin{bmatrix}1&-2&1\\ -2&3&1\\ 1&1&5\end{bmatrix}=A\)
\(∴(A^{-1})^{-1}=A\)
Was this answer helpful?
1
0