Question:

Find the sums given below :
  1. 7+1012+14+.......+847 + 10\frac 12+ 14 + ....... + 84
  2. 34+32+30+.......+1034 + 32 + 30 + ....... + 10
  3. 5+(8)+(11)+.......+(230)–5 + (–8) + (–11) + ....... + (–230)

Updated On: Aug 5, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) 7+1012+14++847 + 10\frac 12 + 14 + …………+ 84
For this A.P.,
a=7a = 7 and l=84l = 84
d=a2a1=10127=2127=72d = a_2-a_1 = 10\frac 12 -7 = \frac {21}{2} - 7 = \frac 72
Let 84 be the nth term of this A.P.
l=a+(n1)dl = a + (n − 1)d
84=7+(n1)7284 = 7 + (n-1)\frac 72
77= (n1)7277 = (n-1)\frac 72
22=n122 = n − 1
n=23n = 23
We know that,
Sn=n2[a+l]S_n = \frac n2[a+l]

S23=232[7+84]S_{23} = \frac {23}{2}[7+84]

S23=23×912S_{23} = \frac {23 \times 91}{2}

S23=20932S_{23} =\frac {2093}{2}

S23=104612S_{23} = 1046\frac 12


(ii) 34+32+30+..+1034 + 32 + 30 + ……….. + 10
For this A.P., a=34a = 34d=a2a1=3234=2d = a_2 − a_1 = 32 − 34 = −2 and l=10l = 10
Let 1010  be the nth term of this A.P. 
l=a+(n1)dl = a + (n − 1) d
10=34+(n1)(2)10 = 34 + (n − 1) (−2)
24=(n1)(2)−24 = (n − 1) (−2)
12=n112 = n − 1
n=13n = 13
Sn=n2[a+l]S_n = \frac n2[a+l]

Sn=132[34+10]S_n = \frac {13}{2}[34+10]

Sn=13×442Sn = \frac {13 \times 44}{2}
Sn=13×22S_n = 13 \times 22
Sn=286S_n = 286


(iii) (5)+(8)+(11)++(230)(−5) + (−8) + (−11) + ………… + (−230)
For this A.P.,
a=5a = −5l=230l = −230 and d=a2a1=(8)(5)=8+5=3d = a_2 − a_1 = (−8) − (−5) = − 8 + 5 = −3
Let 230−230 be the nth term of this A.P.
l=a+(n1)dl = a + (n − 1)d
230=5+(n1)(3)−230 = − 5 + (n − 1) (−3)
225=(n1)(3)−225 = (n − 1) (−3)
n1=75n − 1 = 75
n=76n = 76
And, Sn=n2[a+l]S_n =\frac n2[a+l]

Sn=762[(5)+(230)]S_n = \frac {76}{2}[(-5)+(-230)]
Sn=38(235)S_n = 38(-235)
Sn=8930S_n = - 8930

Was this answer helpful?
1
0

Top Questions on Sum of First n Terms of an AP

View More Questions