>
Mathematics
List of top Mathematics Questions
If
$\sqrt{1-x^{2} } + \sqrt{1- y^{2}} =x -y $
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
A particular solution of
$ \frac{dy}{dx} = (x+9y)^2$
when
$ x = 0, y = \frac{1}{27}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Differential equations
The amplitude of
$(1+i)^5$
is
KCET - 2007
KCET
Mathematics
argand plane
The solutions of $ x+\sin \,5x=\sin 3x $ in $ \left( 0,\frac{\pi }{2} \right) $ are
JKCET - 2007
JKCET
Mathematics
integral
If the extremities of a diagonal of a square are
$ (1,-2,3) $
and
$ (2,-3,5) $
then the length of the side is
JKCET - 2007
JKCET
Mathematics
introduction to three dimensional geometry
Let
$A$
be a square matrix and
$ {{A}^{T}} $
is its transpose, then
$ A+{{A}^{T}} $
is
JKCET - 2007
JKCET
Mathematics
Matrices
If
$ P=(0,1,2),\,\,Q=(4,-2,1),O=(0,0,0), $
then
$ \angle POQ $
is equal to
JKCET - 2007
JKCET
Mathematics
Three Dimensional Geometry
If
$ \alpha ,\beta ,\gamma $
are the roots of the equation
$ {{x}^{3}}-7x+7=0, $
then
$ \frac{1}{{{\alpha }^{4}}}+\frac{1}{{{\beta }^{4}}}+\frac{1}{{{\gamma }^{4}}} $
is
JKCET - 2007
JKCET
Mathematics
Complex Numbers and Quadratic Equations
Through the point
$ P(\alpha ,\,\beta ,\,\,\gamma ) $
a plane is drawn at right angles to OP to meet the coordinate axes are A, B,. C respectively. If
$ OP=p, $
then equation of plane
$ ABC$
is
JKCET - 2007
JKCET
Mathematics
Three Dimensional Geometry
At
$ x=\frac{3}{2} $
the function
$ f(x)=\frac{|2x-3|}{2x-3} $
is
JKCET - 2007
JKCET
Mathematics
Differentiability
If
$ x\left[ \begin{matrix} -3 \\ 4 \\ \end{matrix} \right]+y\left[ \begin{matrix} 4 \\ 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 10 \\ -5 \\ \end{matrix} \right], $
then
JKCET - 2007
JKCET
Mathematics
Matrices
Derivative of
$ {{\log }_{10}}\,x $
with respect to
$ {{x}^{2}} $
is
JKCET - 2007
JKCET
Mathematics
Differentiability
If the difference between the roots of
$ {{x}^{2}}+ax-b=0 $
is equal to the difference between the roots of
$ {{x}^{2}}-px+q=0, $
then
$ {{a}^{2}}-{{p}^{2}} $
in terms of
$b$
and
$q$
is
JKCET - 2007
JKCET
Mathematics
Complex Numbers and Quadratic Equations
If
$ \left| \begin{matrix} 1 & 1 & 0 \\ 2 & 0 & 3 \\ 5 & -6 & x \\ \end{matrix} \right|=29, $
then
$x$
is
JKCET - 2007
JKCET
Mathematics
Determinants
If
$ \frac{1+\cos A}{1-\cos A}=\frac{{{m}^{2}}}{{{n}^{2}}}, $
then
$tan\, A$
=
JKCET - 2007
JKCET
Mathematics
Trigonometric Functions
$ \underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x}{{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $
=
JKCET - 2007
JKCET
Mathematics
limits and derivatives
$ \int{\frac{1}{1+\cos \,\,ax}}\,\,dx $
is equal to
JKCET - 2007
JKCET
Mathematics
Integrals of Some Particular Functions
The direction cosines of two rays
$ \overrightarrow{AB} $
and
$ \overrightarrow{AC} $
are
$ \left( \frac{1}{2},\frac{1}{2},-1 \right) $
and
$ \left( \frac{2}{7},\frac{-3}{7},\frac{6}{7} \right). $
The direction ratios of one of the bisectors of angle
$ \left( \overrightarrow{AB},\overrightarrow{AC} \right) $
are
JKCET - 2007
JKCET
Mathematics
Three Dimensional Geometry
The solution of the equation
$ 2{{x}^{3}}-{{x}^{2}}-22x-24=0 $
when two of the roots are in the ratio
$ 3:4, $
is
JKCET - 2007
JKCET
Mathematics
Complex Numbers and Quadratic Equations
The angle between the pair of lines
$ ({{x}^{2}}+{{y}^{2}}){{\sin }^{2}}\alpha ={{(x\,\cos \theta -y\,\sin \theta )}^{2}} $
is :
JKCET - 2007
JKCET
Mathematics
angle between two lines
If the foot of the perpendicular from
$ (0,0,0) $
to a plane is
$ (1,2,2), $
then the equation of the plane is
JKCET - 2007
JKCET
Mathematics
Three Dimensional Geometry
The value of
$ {{\cos }^{2}}\left( \frac{\pi }{4}+\theta \right)-{{\sin }^{2}}\left( \frac{\pi }{4}-\theta \right) $
is
JKCET - 2007
JKCET
Mathematics
Trigonometric Functions
If
$ {{I}_{m}}\left( \frac{z-1}{2z+1} \right)=-4, $
then locus of z is
BCECE - 2007
BCECE
Mathematics
Quadratic Equations
$ABC$
is a triangle
$G$
is the centroid
$ D$
is the mid- point of
$BC$
. If
$A - (2, 3) $
and
$G = (7, 5)$
, then the point
$D$
is
KCET - 2007
KCET
Mathematics
Straight lines
Let
$ {{z}_{1}} $
and
$ {{z}_{2}} $
be the roots of the equation
$ {{z}^{2}}+pz+q=0 $
where p, q are real. The points represented by
$ {{z}_{1}},{{z}_{2}} $
and the origin form an equilateral triangle, if
KEAM - 2007
KEAM
Mathematics
Quadratic Equations
Prev
1
...
727
728
729
730
731
...
984
Next