Question:

If sin(α+β)=6sin(αβ) and k=tanαtanβ, then, what is the value of k ?

Updated On: Aug 3, 2024
  • (A) 35
  • (B) 65
  • (C) 45
  • (D) 75
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Explanation:
Given,sin(α+β)=6sin(αβ) and k=tanαtanβsin(α+β)=6sin(αβ)sinαcosβ+cosαsinβ=6sinαcosβ6cosαsinβcosαsinβ+6cosαsinβ=6sinαcosβsinαcosβ7cosαsinβ=5sinαcosβsinαcosα=75×sinβcosβ tan α=75×tanβk=tanαtanβ=75 The value of k is 75
Hence, the correct option is (D).
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions