Question:

For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square number. Also find the square root of the square number so obtained. 
  1. 252 
  2. 2925 
  3. 396 
  4. 2645 
  5. 2800 
  6.  1620

Updated On: Aug 8, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(252\) can be factorised as follows. 

2252
2126
363
321
77
 1

\(252=\underline{2\times2}\times\underline{3\times3}\times7\)
Here, prime factor \(7\) does not have its pair.
If we divide this number by \(7\), then the number will become a perfect square. 
Therefore, \(252\) has to be divided by \(7\) to obtain a perfect square. 
\(\frac{252}{7}=36 \) is a perfect square. 
\(36=\underline{2\times2}\times\underline{3\times3}\)
∴ \(\sqrt{36}=2\times3=6\)


(ii) \(2925\) can be factorised as follows. 

32975
3925
5325
565
1313
 1


\(2925=\underline{3\times3}\times\underline{5\times5}\times13\)
Here, prime factor \(13\) does not have its pair.
If we divide this number by \(13\), then the number will become a perfect square. 
Therefore, \(2925\) has to be divided by \(13\) to obtain a perfect square.
\(\frac{2925}{13} = 225 \) is a perfect square.
\(225=\underline{3\times3}\times\underline{5\times5}\)
\( \sqrt{225}=3\times5=15\)


(iii)\(396\) can be factorised as follows

2396
2198
399
333
1111
 1


\(396=\underline{2\times2}\times\underline{3\times3}\times11\)
Here, prime factor \(11\) does not have its pair.
If we divide this number by \(11\), then the number will become a perfect square. 
Therefore, \(396\) has to be divided by \(11 \)to obtain a perfect square. 
\(\frac{396 }{11} = 36 \) is a perfect square.
\(36=\underline{2\times2}\times\underline{3\times3}\)
\(\sqrt{36}=2\times3=6\)


(iv) \(2645\) can be factorised as follows. 

52645
23529
2323
 1


\(2645 = 5 \times \underline{23 \times 23 }\) 
Here, prime factor \(5\) has no pair. 
Therefore 2645 must be divided by \(5\) to make it a perfect square. 
\(\sqrt{529} = 23 \times 23 = 23\) 

Was this answer helpful?
1
0