\((\vec{i}-\vec{j}+\vec{k})\cdot(7\vec{i}-8\vec{j}+9\vec{k})=\) ?
If the line \(\dfrac{x}{-1}=\dfrac{y}{2}=\dfrac{z}{3}\) is parallel to the plane \(ax+by+cz+d=0\) then
\((11\vec{i}-7\vec{j}-\vec{k})\cdot(8\vec{i}-\vec{j}-5\vec{k})=\) ?
If \(P(A)=\dfrac{7}{11},\ P(B)=\dfrac{9}{11},\ P(A\cap B)=\dfrac{4}{11}\), then \(P(A/B)=\) ?
If \(P(E)=\dfrac{3}{7},\ P(F)=\dfrac{5}{7},\ P(E\cup F)=\dfrac{6}{7}\), then \(P(E\cap F)=\) ?
\((3\vec{k}-7\vec{i})\times 2\vec{k}=\) ?
\(\ \left|\ \vec{i}-2\vec{j}+2\vec{k}\ \right|=\) ?
The direction ratios of the line \(\dfrac{x+1}{3}=\dfrac{y-2}{3}=\dfrac{z-5}{6}\) are
\(\dfrac{d}{dx}(x^{3}+e^{x})=\) ?
\(\dfrac{d}{dx}(\tan x+\sin^{2}x)=\) ?
\(\dfrac{d^{2}}{dx^{2}}(e^{5x})=\) ?
\(3\displaystyle \int_{0}^{3} x^{3}\,dx=\) ?
\(\displaystyle \int_{-1}^{1}\sin^{17}x\,\cos^{3}x\,dx=\) ?
\(\displaystyle \int_{-1}^{1} x^{17}\,dx=\) ?
\(3\displaystyle \int \sqrt{x}\,dx=\) ?
\(\displaystyle \int \frac{x+2}{x^{2}-4}\,dx=\) ?
\(\displaystyle \int \frac{3\,dx}{\sqrt{\,1-9x^{2}\,}}=\) ?
\(25\displaystyle \int \sec5x\,\tan5x\,dx=\) ?
\(\displaystyle \int \sec^{2}4x\,dx=\) ?
\(\ \vec{k}\cdot(\vec{i}+\vec{j})=\) ?
\(\displaystyle \int \frac{dx}{1+36x^{2}}=\) ?