Question:

\(\displaystyle \int \frac{3\,dx}{\sqrt{\,1-9x^{2}\,}}=\) ?

Show Hint

Standard form: $\displaystyle \int\frac{du}{\sqrt{1-u^{2}}}=\sin^{-1}u+C$.
  • \(\tan^{-1}(3x)+k\)
  • \(\sec^{-1}(3x)+k\)
  • \(\sin^{-1}(3x)+k\)
  • \(\cos^{-1}(3x)+k\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let \(u=3x\Rightarrow du=3\,dx\). Then \[ \int \frac{3\,dx}{\sqrt{1-9x^{2}}}=\int \frac{du}{\sqrt{1-u^{2}}}=\sin^{-1}u+k=\sin^{-1}(3x)+k. \]
Was this answer helpful?
0
0