Question:

\(\displaystyle \int \frac{dx}{1+36x^{2}}=\) ?

Show Hint

Standard form: $\displaystyle \int\frac{dx}{a^{2}+x^{2}}=\frac{1}{a}\tan^{-1}\!\frac{x}{a}+C$.
  • \(6\tan^{-1}(6x)+k\)
  • \(3\tan^{-1}(6x)+k\)
  • \(\dfrac{1}{6}\tan^{-1}(6x)+k\)
  • \(\tan^{-1}(6x)+k\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let \(u=6x\Rightarrow du=6\,dx\Rightarrow dx=\dfrac{du}{6}\). Then \[ \int \frac{dx}{1+(6x)^{2}}=\frac{1}{6}\int \frac{du}{1+u^{2}} =\frac{1}{6}\tan^{-1}u+k=\frac{1}{6}\tan^{-1}(6x)+k. \]
Was this answer helpful?
0
0