Question:

\((10\vec{i}+\vec{j}+\vec{k})\times(-4\vec{i}+7\vec{j}-11\vec{k})=\) ?

Show Hint

Cofactor signs are \(+,-,+\) across the top row.
  • \(-18\vec{i}+106\vec{j}+74\vec{k}\)
  • \(18\vec{i}-106\vec{j}-74\vec{k}\)
  • \(18\vec{i}+106\vec{j}+74\vec{k}\)
  • \(5\vec{i}-6\vec{j}-7\vec{k}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use determinant: \[ \begin{vmatrix} \vec{i}&\vec{j}&\vec{k} \\ 10&1&1 \\ -4&7&-11 \end{vmatrix} = \vec{i}(1\cdot(-11)-1\cdot 7)\ -\ \vec{j}(10\cdot(-11)-1\cdot(-4))\ +\ \vec{k}(10\cdot 7-1\cdot(-4)). \] Compute: \(\vec{i}(-11-7)-\vec{j}(-110+4)+\vec{k}(70+4)=-18\vec{i}+106\vec{j}+74\vec{k}\).
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions