If a number $ n $ is chosen at random from the set $\{11, 12, 13, ..., 30\}\,$ then, the probability that $ n $ is neither divisible by 3 nor divisible by 5, is
The lines $ \frac{x-1}{2} = \frac{y-4}{4} = \frac{z-2}{3} \quad \text{and} \quad \frac{1-x}{1} = \frac{y-2}{5} = \frac{3-z}{a} \quad \text{are perpendicular to each other, then} \ a \ \text{equals to} $
Given $ \mathbf{a} = 2\hat{i} + \hat{j} - \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j}, \quad \mathbf{c} = 5\hat{i} - \hat{j} + \hat{k},$ then the unit vector parallel to $\mathbf{a} + \mathbf{b} - \mathbf{c} $ but in the opposite direction is
If $$ A = \begin{pmatrix} k + 1 & 2 \\4 & k - 1 \end{pmatrix}$$ is a singular matrix, then possible values of k are