Given $ \mathbf{a} = 2\hat{i} + \hat{j} - \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j}, \quad \mathbf{c} = 5\hat{i} - \hat{j} + \hat{k},$ then the unit vector parallel to $\mathbf{a} + \mathbf{b} - \mathbf{c} $ but in the opposite direction is
To find the unit vector parallel to \( \mathbf{a} + \mathbf{b} - \mathbf{c} \) in the opposite direction, we first compute the vector \( \mathbf{a} + \mathbf{b} - \mathbf{c} \).
Given: \[ \mathbf{a} = 2\hat{i} + \hat{j} - \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j}, \quad \mathbf{c} = 5\hat{i} - \hat{j} + \hat{k} \]
Calculate \( \mathbf{a} + \mathbf{b} \):
\[ \mathbf{a} + \mathbf{b} = (2\hat{i} + \hat{j} - \hat{k}) + (\hat{i} - \hat{j}) = (2+1)\hat{i} + (1-1)\hat{j} + (-1)\hat{k} = 3\hat{i} + 0\hat{j} - \hat{k} \]
Now subtract \( \mathbf{c} \):
\[ \mathbf{a} + \mathbf{b} - \mathbf{c} = (3\hat{i} - \hat{k}) - (5\hat{i} - \hat{j} + \hat{k}) = (3-5)\hat{i} + (0+1)\hat{j} + (-1-1)\hat{k} = -2\hat{i} + \hat{j} - 2\hat{k} \]
Find magnitude of \( -2\hat{i} + \hat{j} - 2\hat{k} \):
\[ \|\mathbf{v}\| = \sqrt{(-2)^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \]
The unit vector in the opposite direction is obtained by scaling by -1/3:
\[-\frac{1}{3}(-2\hat{i} + \hat{j} - 2\hat{k}) = \frac{1}{3}(2\hat{i} - \hat{j} + 2\hat{k})\]
Therefore, the unit vector parallel to \( \mathbf{a} + \mathbf{b} - \mathbf{c} \) but in the opposite direction is \(\frac{1}{3} \left( 2\hat{i} - \hat{j} + 2\hat{k} \right)\).
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: