\( \frac{8}{5} \)
To determine the value of \( m \) that makes vectors \(\mathbf{a}\), \(\mathbf{b}\), and \(\mathbf{c}\) coplanar:
Given Vectors:
\[ \begin{aligned} \mathbf{a} &= 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \\ \mathbf{b} &= \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}} \\ \mathbf{c} &= m\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}} \end{aligned} \]
1. Coplanarity Condition:
Three vectors are coplanar when their scalar triple product equals zero: \[ [\mathbf{a}\ \mathbf{b}\ \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \]
2. Compute Cross Product \(\mathbf{b} \times \mathbf{c}\):
\[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & -1 \\ m & -1 & 2 \end{vmatrix} \] \[ = 3\hat{\mathbf{i}} - (2 + m)\hat{\mathbf{j}} - (1 + 2m)\hat{\mathbf{k}} \]
3. Calculate Dot Product:
\[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 6 + 3(2 + m) - 4(1 + 2m) = 8 - 5m \]
4. Solve for \( m \):
Set the scalar triple product to zero: \[ 8 - 5m = 0 \implies m = \frac{8}{5} \]
Final Answer:
The value of \( m \) that makes the vectors coplanar is: \[ m = \frac{8}{5} \]
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: