To find the angle θ between vectors a and b:
Given Vectors:
\[
\begin{aligned}
\mathbf{a} &= \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \\
\mathbf{b} &= \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}
\end{aligned}
\]
1. Calculate Magnitudes:
\[
\begin{aligned}
|\mathbf{a}| &= \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3 \\
|\mathbf{b}| &= \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{9} = 3
\end{aligned}
\]
2. Compute Dot Product:
\[
\mathbf{a} \cdot \mathbf{b} = (1)(1) + (2)(2) + (2)(-2) = 1 + 4 - 4 = 1
\]
3. Relate Dot Product to Angle:
Using the identity:
\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cosθ
\]
\[
1 = 3 \times 3 \times \cosθ
\]
4. Solve for θ:
\[
\cosθ = \frac{1}{9} \implies θ = \cos^{-1}\left(\frac{1}{9}\right)
\]
Final Answer:
The angle between vectors a and b is:
\[
θ = \cos^{-1}\left(\frac{1}{9}\right)
\]
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure. 
The angular velocity of the system after the particle sticks to it will be: