We are asked to find the least negative integral value of \( k \) such that the expression \( 49^n + 16^n + k \) is divisible by 64 for all \( n \in \mathbb{N} \).
To solve this, let's analyze the powers of 49 and 16 modulo 64.
Step 1: Simplify \( 49^n \) modulo 64
Note that: \[ 49 \equiv -15 \pmod{64} \] So, we calculate the powers of 49 modulo 64: \[ 49^1 \equiv -15 \pmod{64} \] \[ 49^2 \equiv (-15)^2 = 225 \equiv 33 \pmod{64} \] \[ 49^3 \equiv (-15)^3 = -3375 \equiv -23 \pmod{64} \] It is clear that \( 49^n \) will repeat periodically modulo 64, and we need to find a pattern for any general value of \( n \).
Step 2: Simplify \( 16^n \) modulo 64
We now calculate powers of 16 modulo 64: \[ 16^1 \equiv 16 \pmod{64} \] \[ 16^2 \equiv 16^2 = 256 \equiv 0 \pmod{64} \] For higher powers of 16, \( 16^n \) will be congruent to 0 modulo 64 for \( n \geq 2 \).
Step 3: Analyze the expression
We now combine \( 49^n \) and \( 16^n \) modulo 64. For \( n \geq 2 \), \( 16^n \equiv 0 \pmod{64} \), so the expression simplifies to: \[ 49^n + 16^n + k \equiv 49^n + k \pmod{64} \] For the expression to be divisible by 64, we need: \[ 49^n + k \equiv 0 \pmod{64} \] Using the fact that \( 49^1 \equiv -15 \pmod{64} \), \( 49^2 \equiv 33 \pmod{64} \), and so on, we can see that the least value of \( k \) that will make this true is \( k = -1 \).
Thus, the least negative integral value of \( k \) is \( -1 \).
To determine the least negative integral value of \( k \) such that \( 49^n + 16^n + k \) is divisible by 64 for \( n \in \mathbb{N} \), we proceed as follows:
First, simplify \( 49^n \mod 64 \):
\(49 = 7^2 \). We find \( 7 \mod 64 \): Since \( 7 < 64 \), \( 7 \equiv 7 \mod 64 \).
\( 7^2 = 49 \equiv 49 \mod 64 \).
Calculate \( 7^3 \mod 64 \):
\( 343 \equiv 23 \mod 64 \) because \( 343 = 64 \times 5 + 23 \).
Next, calculate \( 7^4 \mod 64 \):
\( 7^4 = 7 \times 343 = 2401 \equiv 1 \mod 64 \) because \( 2401 = 64 \times 37 + 1 \).
This implies \( 7^{4m} \equiv 1 \mod 64 \) for any integer \( m \).
Thus \( 7^{4n} \equiv 1 \mod 64 \) and:
\( 49^n = (7^2)^n = 7^{2n} \equiv \begin{cases} 49 \mod 64 & \text{if } n \equiv 1 \mod 2\\ 1 \mod 64 & \text{if } n \equiv 0 \mod 2 \end{cases} \).
Next, simplify \( 16^n \mod 64 \):
\( 16 = 2^4 \) implies that \( 16^n = (2^4)^n = 2^{4n} \).
Since \( 2^6 = 64 \equiv 0 \mod 64 \), for \( n \geq 2 \), \( 2^{4n} = 16^n \equiv 0 \mod 64 \).
Consider \( n = 1 \):
\( 16^1 = 16 \equiv 16 \mod 64 \).
Now, substitute for \( n = 1 \):
\( 49^1 + 16^1 + k = 49 + 16 + k = 65 + k \equiv 1 + k \mod 64 = 0 \mod 64 \).
Thus, \( k \equiv -1 \mod 64 \).
The least negative integral value of \( k \) is \( -1 \).
Therefore, the least negative integral value of \( k \) is \( \boxed{-1} \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: