The problem is to determine the general solution to the differential equation:
$$ \left( \frac{dy}{dx} \right)^2 = 1 - x^2 - y^2 + x^2y^2 $$
First, rewrite this equation:
$$ \left( \frac{dy}{dx} \right)^2 = (1 - x^2)(1 - y^2) $$
This implies:
$$ \frac{dy}{dx} = \pm \sqrt{(1-x^2)(1-y^2)} $$
This is solved using a trigonometric substitution. Let's assume:
$$ x = \sin \theta $$
Thus, \( dx = \cos \theta \, d\theta \) and:
$$ 1-x^2 = \cos^2 \theta $$
Additionally, assume:
$$ y = \sin \phi $$
So, \( dy = \cos \phi \, d\phi \) and:
$$ 1-y^2 = \cos^2 \phi $$
Substituting these into the original equation gives:
$$ \cos^2 \phi \, \left(\frac{d\phi}{d\theta}\right)^2 = \cos^2 \theta \cos^2 \phi $$
This simplifies to:
$$ \frac{d\phi}{d\theta} = \pm \cos \theta $$
Integrating both sides, we have:
$$ \phi = \pm \sin^{-1} (\sin \theta) + C $$
Using the identities, we know:
$$ \phi = \pm \theta + C $$
Back substitute \( x = \sin \theta \) and \( y = \sin \phi \):
$$ \sin^{-1} y = \pm \sin^{-1} x + C $$
Choose the positive sign for the simplicity and authenticity of the original problem in expression:
$$ 2\sin^{-1} y = x \sqrt{1-x^2} + \sin^{-1} x + C $$
This matches the general solution given as:
$$ 2\sin^{-1}y = x\sqrt{1 - x^2} + \sin^{-1}x + C $$