To evaluate the integral:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx
\]
We can use the identity \( \sin^2 x = \frac{1}{2} (1 - \cos(2x)) \) to simplify the integrand:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos(2x)) \, dx
\]
This separates into two integrals:
\[
I = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2x) \, dx
\]
The first integral evaluates to:
\[
\frac{1}{2} \left( x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right) = \frac{1}{2} \left( \frac{\pi}{2} - \left( -\frac{\pi}{2} \right) \right) = \frac{\pi}{2}
\]
The second integral is:
\[
\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2x) \, dx
\]
The integral of \( \cos(2x) \) is \( \frac{1}{2} \sin(2x) \), and since \( \sin(2x) \) is zero at both bounds \( x = -\frac{\pi}{2} \) and \( x = \frac{\pi}{2} \), this part evaluates to zero:
\[
\frac{1}{2} \left[ \frac{1}{2} \sin(2x) \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right] = 0
\]
Thus, the total value of the integral is:
\[
I = \frac{\pi}{2}
\]