To solve the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx \), we can use the trigonometric identity: \(\sin^2 x = \frac{1-\cos(2x)}{2}\).
This allows us to rewrite the integral as:
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1-\cos(2x)}{2} \, dx\]
Breaking it down, we have:
\[\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx - \frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2x) \, dx\]
Calculating the first part:
\[\frac{1}{2} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx\right] = \frac{1}{2} \left[x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2}(\frac{\pi}{2} - (-\frac{\pi}{2})) = \frac{\pi}{2}\]
Calculating the second part:
\[\frac{1}{2} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2x) \, dx\right]\]
The integral of \(\cos(2x)\) is \(\frac{1}{2}\sin(2x)\). Therefore:
\[\frac{1}{2}\left[\frac{1}{2}\sin(2x) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{4}\left[\sin(\pi) - \sin(-\pi)\right] = \frac{1}{4}(0 - 0) = 0\]
Putting it all together:
\[\frac{\pi}{2} - 0 = \frac{\pi}{2}\]
Thus, the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{2}\).
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: