Evaluate the integral: \[ \int \frac{\sec x}{3(\sec x + \tan x) + 2} \,dx \]
For positive integers $p$ and $q$, with $\tfrac{p}{q} \neq 1$, $\Big(\tfrac{p}{q}\Big)^{\tfrac{p}{q}} = p^{\big(\tfrac{p}{q}-1\big)}$. Then,
For real values of $ x $ and $ a $, if the expression $ \frac{x+a}{2x^2 - 3x + 1} $ assumes all real values, then: