Step 1: Express the denominator
Rewriting,
\[
9\cos^2 2x + 16\sin^2 2x = 9 + 7\sin^2 2x.
\]
Substituting \( t = \tan 2x \), we get:
\[
dt = 2\sec^2 2x dx.
\]
Step 2: Integrate using substitution
\[
I = \int \frac{dx}{9 + 7\tan^2 2x}.
\]
Using standard integration formula:
\[
I = \frac{1}{24} \tan^{-1} \left( \frac{4}{3} \tan 2x \right) + c.
\]
Thus, the correct answer is \( \boxed{\frac{1}{24} \tan^{-1} \left( \frac{4}{3} \tan 2x \right) + c} \).