Question:

Evaluate the integral: \[ \int \frac{dx}{9\cos^2 2x + 16\sin^2 2x} \]

Show Hint

Express denominator in standard quadratic form for easier integration. - Use substitution \( t = \tan x \) for rational trigonometric integrals.
Updated On: Mar 11, 2025
  • \( \frac{1}{25} \tan^{-1} \left( \frac{3}{4} \sec^2 2x \right) + c \)
  • \( \frac{1}{25} \tan^{-1} \left( \frac{4}{3} \sec^2 2x \right) + c \)
  • \( \frac{1}{24} \tan^{-1} \left( \frac{3}{4} \tan 2x \right) + c \)
  • \( \frac{1}{24} \tan^{-1} \left( \frac{4}{3} \tan 2x \right) + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Step 1: Express the denominator
Rewriting, \[ 9\cos^2 2x + 16\sin^2 2x = 9 + 7\sin^2 2x. \] Substituting \( t = \tan 2x \), we get: \[ dt = 2\sec^2 2x dx. \] Step 2: Integrate using substitution
\[ I = \int \frac{dx}{9 + 7\tan^2 2x}. \] Using standard integration formula: \[ I = \frac{1}{24} \tan^{-1} \left( \frac{4}{3} \tan 2x \right) + c. \] Thus, the correct answer is \( \boxed{\frac{1}{24} \tan^{-1} \left( \frac{4}{3} \tan 2x \right) + c} \).
Was this answer helpful?
0
0