Evaluate the integral: \[ \int \frac{\sec x}{3(\sec x + \tan x) + 2} \,dx \]
\( \log |3 \tan x + 2 \sec x| + C \)
Step 1: Substituting \( \tan \frac{x}{2} \) Using the Weierstrass substitution: \[ t = \tan \frac{x}{2} \] We apply the standard transformations: \[ \sec x = \frac{1 + t^2}{1 - t^2}, \quad \tan x = \frac{2t}{1 - t^2}, \quad dx = \frac{2 dt}{1 + t^2} \]
Step 2: Expressing the Denominator \[ 3(\sec x + \tan x) + 2 \] \[ = 3 \left( \frac{1 + t^2}{1 - t^2} + \frac{2t}{1 - t^2} \right) + 2 \] \[ = 3 \cdot \frac{1 + t^2 + 2t}{1 - t^2} + 2 \] \[ = \frac{3 + 3t^2 + 6t}{1 - t^2} + 2 \] \[ = \frac{3 + 3t^2 + 6t + 2(1 - t^2)}{1 - t^2} \] \[ = \frac{3 + 3t^2 + 6t + 2 - 2t^2}{1 - t^2} \] \[ = \frac{1 + t^2 + 6t + 3}{1 - t^2} \] \[ = \frac{(\tan \frac{x}{2} + 5)(\tan \frac{x}{2} + 1)}{1 - t^2} \]
Step 3: Integrating \[ \int \frac{\sec x}{(\tan \frac{x}{2} + 5)(\tan \frac{x}{2} + 1)} \,dx \] Applying logarithm integration properties: \[ \frac{1}{2} \log \left| \frac{\tan \frac{x}{2} + 1}{\tan \frac{x}{2} + 5} \right| + C \]
\[ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).