Given the equation:
\[
3 x^2 + 2 \sqrt{3} x y + y^2 = 0
\]
The axes are rotated by angle \( \theta \) to remove the \( xy \) term.
Step 1: The angle \( \theta \) of rotation to remove the \( xy \) term in a conic:
\[
\tan 2\theta = \frac{2 B}{A - C}
\]
Here, \( A = 3 \), \( B = \sqrt{3} \), and \( C = 1 \). Substitute:
\[
\tan 2\theta = \frac{2 \times \sqrt{3}}{3 - 1} = \frac{2 \sqrt{3}}{2} = \sqrt{3}
\]
So:
\[
2\theta = 60^\circ \implies \theta = 30^\circ
\]
Step 2: The second equation:
\[
x^2 + y^2 + 2 x y = 2
\]
Rewrite in matrix form:
\[
\begin{bmatrix} x & y \end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix} x \\ y \end{bmatrix} = 2
\]
because \( x^2 + y^2 + 2 x y = (x + y)^2 \).
Step 3: Apply rotation by \( \theta = 30^\circ \):
New coordinates \( (X, Y) \) related to old \( (x, y) \) by:
\[
\begin{bmatrix} x \\ y \end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix} X \\ Y \end{bmatrix}
\]
Substitute \( \cos 30^\circ = \frac{\sqrt{3}}{2} \), \( \sin 30^\circ = \frac{1}{2} \):
\[
x = \frac{\sqrt{3}}{2} X - \frac{1}{2} Y, \quad y = \frac{1}{2} X + \frac{\sqrt{3}}{2} Y
\]
Step 4: Substitute into the second equation:
\[
(x + y)^2 = 2
\]
Calculate \( x + y \):
\[
x + y = \left(\frac{\sqrt{3}}{2} X - \frac{1}{2} Y\right) + \left(\frac{1}{2} X + \frac{\sqrt{3}}{2} Y\right) = \frac{\sqrt{3} + 1}{2} X + \frac{\sqrt{3} - 1}{2} Y
\]
Square both sides:
\[
\left( \frac{\sqrt{3} + 1}{2} X + \frac{\sqrt{3} - 1}{2} Y \right)^2 = 2
\]
Multiply both sides by 4:
\[
\left( (\sqrt{3} + 1) X + (\sqrt{3} - 1) Y \right)^2 = 8
\]
Expand:
\[
(\sqrt{3} + 1)^2 X^2 + 2 (\sqrt{3} + 1)(\sqrt{3} - 1) X Y + (\sqrt{3} - 1)^2 Y^2 = 8
\]
Calculate squares and product:
\[
(\sqrt{3} + 1)^2 = 3 + 2 \sqrt{3} + 1 = 4 + 2 \sqrt{3}
\]
\[
(\sqrt{3} - 1)^2 = 3 - 2 \sqrt{3} + 1 = 4 - 2 \sqrt{3}
\]
\[
(\sqrt{3} + 1)(\sqrt{3} - 1) = 3 - 1 = 2
\]
So:
\[
(4 + 2 \sqrt{3}) X^2 + 4 X Y + (4 - 2 \sqrt{3}) Y^2 = 8
\]
Divide entire equation by 2:
\[
(2 + \sqrt{3}) X^2 + 2 X Y + (2 - \sqrt{3}) Y^2 = 4
\]
Rename \( X, Y \) as \( x, y \) in new coordinate system:
\[
\boxed{ (2 + \sqrt{3}) x^2 + (2 - \sqrt{3}) y^2 + 2 x y = 4 }
\]