Solve and check result: \(2y+\frac{5}{3}=\frac{26}{3}-y\)
Given an example of a relation. Which is(i) Symmetric but neither reflexive nor transitive.(ii) Transitive but neither reflexive nor symmetric.(iii) Reflexive and symmetric but not transitive.(iv) Reflexive and transitive but not symmetric.(v) Symmetric and transitive but not reflexive.
Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) 4x 2 – 3x + 7
(ii) y 2 + √2
(iii) 3 √t + t√2
(iv) y +\(\frac{ 2 }{ y} \)
(v) x 10 + y 3 + t 50
\(\int \sqrt{x^2-8x+7}dx\) is equal to