Question:

Given an example of a relation. Which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.

Updated On: Nov 21, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) Let A = {5, 6, 7}.
Define a relation R on A as R = {(5, 6), (6, 5)}.
Relation R is not reflexive as (5, 5), (6, 6), (7, 7) ∉ R.
Now, as (5, 6) ∈ R and also (6, 5) ∈ R, R is symmetric.
⇒ (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R
∴R is not transitive.


Hence, relation R is symmetric but not reflexive or transitive.


(ii) Consider a relation R in R defined as:
R = {(a, b): a < b}
For any a ∈ R, we have (a, a) ∉ R since a cannot be strictly less than a itself. In fact, a = a.
∴ R is not reflexive.
Now,
(1, 2) ∈ R (as 1 < 2)
But, 2 is not less than 1.
∴ (2, 1) ∉ R
∴ R is not symmetric.
Now, let (a, b), (b, c) ∈ R.
⇒ a < b and b < c
⇒ a < c
⇒ (a, c) ∈ R
∴R is transitive.


Hence, relation R is transitive but not reflexive and symmetric.


(iii) Let A = {4, 6, 8}.
Define a relation R on A as:
A = {(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)}
Relation R is reflexive since for every a ∈ A, (a, a) ∈R i.e., (4, 4), (6, 6), (8, 8)} ∈ R.
Relation R is symmetric since (a, b) ∈ R ⇒ (b, a) ∈ R for all a, b ∈ R.
Relation R is not transitive since (4, 6), (6, 8) ∈ R, but (4, 8) ∉ R.


Hence, relation R is reflexive and symmetric but not transitive.


(iv) Define a relation R in R as:
R = {a, b): a3 ≥ b3}
Clearly (a, a) ∈ R as a3= a3.
∴R is reflexive.


Now, (2, 1) ∈ R (as 23 ≥ 13
But,
(1, 2) ∉ R (as 13 < 23)
∴ R is not symmetric.
Now,
Let (a, b), (b, c) ∈ R.
⇒ a3 ≥ b3 and b3 ≥ c3
⇒ a3 ≥ c3
⇒ (a, c) ∈ R
∴R is transitive.


Hence, relation R is reflexive and transitive but not symmetric.


(v) Let A = {−5, −6}.
Define a relation R on A as:
R = {(−5, −6), (−6, −5), (−5, −5)}
Relation R is not reflexive as (−6, −6) ∉ R.
Relation R is symmetric as (−5, −6) ∈ R and (−6, −5}∈R.
It is seen that (−5, −6), (−6, −5) ∈ R. Also, (−5, −5) ∈ R.
∴The relation R is transitive.


Hence, relation R is symmetric and transitive but not reflexive.

Was this answer helpful?
1
0

Concepts Used:

Types of Relation

TYPES OF RELATION

Empty Relation

Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.

Universal Relation

A relation R in a set, say A is a universal relation if each element of A is related to every element of A.

R = A × A.

Identity Relation

Every element of set A is related to itself only then the relation is identity relation.

Inverse Relation

Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1

Reflexive Relation

If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.

Symmetric Relation

A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.

Transitive Relation

A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A

Equivalence Relation

A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.