\(5t - 3 = 3t - 5\)
On transposing \(3t\) to L.H.S and \(-3\) to R.H.S, we obtain
\(5t - 3t = -5 - (-3)\)
\(2t = -2\)
On dividing both sides by \(2\), we obtain
\(t = -1\)
\(\Rightarrow\) L.H.S = \(5t - 3\)
= \(5 \times (-1) - 3\) = \(-8\)
\(\Rightarrow\) R.H.S = \(3t - 5\)
= \(3 \times (-1) - 5\)
= \(- 3 - 5 = -8\)
L.H.S. = R.H.S.
Hence, the result obtained above is correct